Numeric Response Questions

Parabola

- Q.1 The circle $x^2 + y^t = 5$ meets the parabola $y^t = 4x$ at P and Q, then find the length of PQ.
- Q.2 If $P(at_1^2, 2at_1)$ and $Q(at_2^2, 2at_2)$ are two variable points on the curve $y^2 = 4ax$ and PQ subtends a right angle at the vertex then find the value of t_1t_2 .
- Q.3 If one end of a focal chord of parabola $y^2 = 16x$ is (1, -4). Then find the length of the focal chord.
- Q.4 A focal chord of the parabola $y^2 = 16x$ is tangent to the circle $(x 6)^2 + y^2 = 2$ then find sum of possible values of slope of this chord.
- Q.5 The line x 1 = 0 is the directrix of the parabola $y^2 kx + 8 = 0$. Then find the product of values of k.
- Q.6 The equation of latus rectum of a parabola is x + y = 8 and the equation of the tangent at the vertex is x + y = 12, if the length of the latus rectum is $k\sqrt{2}$ then find k.
- Q.7 Find the latus rectum of the parabola $y^2 = 4ax$ whose focal is PSQ such that SP = 3&SQ = 2,
- Q.8 An equilateral triangle is inscribed in the parabola $y^2 = 4ax$, whose vertex is at the vertex of the parabola. If the length of its side is $ka\sqrt{3}$ then find k.
- Q.9 If the distance between directrix and latus rectum of a parabola is 4 units, then find the length of its latus rectum.
- Q.10 Find the length of latus rectum of the parabola $5y^2 3x 8y 1 = 0$.
- Q.11 If the line y = 3x + 1 touches parabola $y^2 = kx$, then find k.
- Q.12 An equilateral triangle is inscribed in the parabola $y^2 = 4ax$ with one vertex at the origin. The radius of the circum circle of that triangle is ka then find k.

- Q.13 The locus of the mid-point of the line segment joining the focus to a moving point on the parabola $y^2 = 4ax$ is another parabola with the directrix $x = \underline{\lambda}$, then find λ .
- Q.14 Find the length of chord of the parabola $y^4 = 4x$ which passes through the vertex and inclined at an angle 60' with x-axis,
- Q.15 Find the number of real tangents that can be drawn to the curve $y^2 + 2xy + x^2 + 2x + 3y + 1 = 0$ from the point (1, -2).

ANSWER KEY

1. 4.00

3. 25.00

4.0.00

5. –32.00

6. 8.00

7. 4.80

8. 8.00

10. 0.60 **11.** 12.00 **12.** 8.00

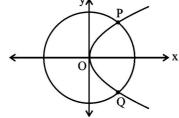
13. 0.00

14. 2.67

15. 0.00

Hints & Solutions

1.



Circle

$$x^2 + y^2 = 5$$

Parabola

$$y^2 = 4x$$

...(i) ...(ii)

solving (i) & (ii)

$$x^2 + 4x = 5$$

$$\Rightarrow$$
 $x^2 + 4x - 5 = 0$

$$\Rightarrow$$
 $(x + 5) (x - 1) = 0$

$$\Rightarrow$$
 x = -5, x = 1

Taking x = 1

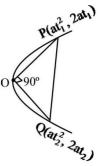
$$y^2 = 4$$

$$y = \pm 2$$

$$P(1, 2), Q(1, -2)$$

$$PQ = 4$$

2.



Slope of OP,
$$m_1 = \frac{2at_1 - 0}{at_1^2 - 0}$$

$$\mathbf{m}_1 = \frac{2}{t_1}$$

Slope of OQ
$$m_2 = \frac{2}{t_2}$$

$$m_1m_2 = -1$$

$$\Rightarrow \frac{2}{t_1} \cdot \frac{2}{t_2} = -1$$

$$\Rightarrow$$
 $\mathbf{t}_1\mathbf{t}_2 = -4$

3.
$$y^2 = 16x$$

$$a = 4$$

Let
$$(at^2, 2at) = (1, -4)$$

$$\Rightarrow$$
 2at = -4 \Rightarrow 8t = -4 \Rightarrow t = -1/2

$$\Rightarrow$$
 Length = $a\left(t + \frac{1}{t}\right)^2$

$$=4\left(-\frac{1}{2}-2\right)^2=25$$

4.
$$y^2 = 16x$$
, $a = 4$

Focus (4, 0)

Let line passing through (4, 0) is

$$y - 0 = m(x - 4)$$

$$\Rightarrow$$
 mx - y - 4m = 0

Centre of circle (6, 0), $r = \sqrt{2}$

$$p = r$$

$$\frac{|6m-0-4m|}{\sqrt{m^2+1}} = \sqrt{2}$$

$$\Rightarrow$$
 4m² = 2(m² + 1)

$$\Rightarrow$$
 m² = 1

5.
$$y^2 - kx + 8 = 0$$

$$\rightarrow$$
 $v^2 = kx - 8$

$$\Rightarrow y^2 = k \left(x - \frac{8}{k}\right)$$

$$Y^2 = 4aX$$

Directrix: X = -a

$$\Rightarrow x - \frac{8}{k} = \frac{-k}{4}$$

$$\Rightarrow x = \frac{8}{k} - \frac{k}{4} \qquad \dots (1)$$

Given directrix x = 1 ...(2)

$$\therefore \quad \frac{8}{k} - \frac{k}{4} = 1$$

$$\Rightarrow$$
 k = -8, 4

6.
$$a = \left| \frac{-8+12}{\sqrt{1+1}} \right| = \frac{4}{\sqrt{2}}$$

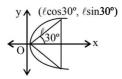
Length of latusrectum =
$$4a = 4\left(\frac{4}{\sqrt{2}}\right)$$

= $8\sqrt{2}$

7.
$$2a = \frac{2 \text{ SP} \times \text{SQ}}{\text{SP} + \text{SQ}} = \frac{2 \times 3 \times 2}{3 + 2} = \frac{12}{5}$$

$$\therefore$$
 latus rectum = 24/5

8.



Point at a ' ℓ ' unit distance from origin will be

$$\left(\frac{\ell\sqrt{3}}{2},\frac{\ell}{2}\right)$$

It lies on parabola, so

$$\frac{\ell^2}{4} = 4a \frac{\ell\sqrt{3}}{2} \Rightarrow \ell = 8a\sqrt{3}$$

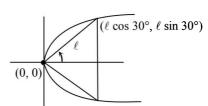
9. If the distance between the directrix and latus rectum is 2a, then length of latus rectum is 4a. Therefore, length of latus rectum is 8 units.

10. Parabola
$$5y^2 - 3x - 8y - 1 = 0$$

Length of L.R = $\left| \frac{-3}{5} \right| = \frac{3}{5}$

11.
$$c = \frac{a}{m} \Rightarrow 1 = \frac{k/4}{3} \Rightarrow k = 12.$$

12.



As
$$\left(\frac{\ell}{2}\right)^2 = 4a$$
. $\ell \frac{\sqrt{3}}{2}$

$$\Rightarrow \frac{\ell}{4} = \frac{4a\sqrt{3}}{2} \Rightarrow \ell = 8a\sqrt{3}$$

Radius =
$$\frac{2}{3} \times 12a = 8a$$
.

13. $(at^2, 2at), (a, 0)$

$$h = \frac{at^2 + a}{2}$$
, $k = \frac{2at + 0}{2}$

$$\therefore 2h - a = at^2, t = \frac{k}{a}$$

$$\therefore 2h - a = a \left(\frac{k}{a}\right)^2$$

$$\Rightarrow$$
 k² = 2ah - a²

$$\Rightarrow$$
 y² = a(2x - a)

Whose directrix is x = 0.

14.
$$y^2 = 4x$$

$$\{m = \tan 60^{\circ} = \sqrt{3}, c = 0, a = 1\}$$

length PQ =
$$\frac{4}{m^2} \sqrt{a(1+m^2)(a-cm)}$$

$$=\frac{4}{3}\sqrt{1(1+3)(1-0)}\,=\frac{8}{3}$$

15.
$$S_1 = 4 - 8 + 1 + 2 - 6 + 1$$

$$S_1 = -6$$

 $S_1 < 0$ (inside the parabola)

Zero tangent

